Imido analogs of aluminophosphates: syntheses and X-ray structures of $\left\{\operatorname{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{2}\right\}_{2}$ and the mono- and di-methylaluminum complexes of the anions $\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{x}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3-x}\right]^{x-}(x=1,2)$

Pierre Blais, Tristram Chivers *, Gabriele Schatte, Mark Krahn
Department of Chemistry, University of Calgary, Calgary, Alta., Canada T2N IN4

Received 3 May 2001; accepted 5 July 2001

Abstract

The reaction of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ with trimethylaluminum in $1: 1$ or $2: 1$ molar ratios in hydrocarbon solvents yields the complexes $\left\{\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{P}(\mu-\mathrm{O})\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{AlMe}_{2}\left[\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]\right\}$ (1) and $\mathrm{MeAl}\left[\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)(\mu-\mathrm{O}) \mathrm{P}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right]_{2}$ (2). The dimeric complex $\left\{\mathrm{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t} B u}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{2}\right\}_{2}$ (3) is obtained by treatment of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t} B u}\right)_{3}$ with LiAlH_{4} in toluene. Complexes $\mathbf{1}-\mathbf{3}$ were characterized by multinuclear NMR spectroscopy and by X-ray crystallography, which revealed different bonding modes for the anions $\left[\mathrm{OP}\left(\mathrm{N}^{t} \mathrm{Bu}\right)\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{2}\right]^{2-}$ and $\left[\mathrm{OP}\left(\mathrm{N}^{t} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)\right]^{2-}$. © 2002 Published by Elsevier Science B.V.

Keywords: Aluminum; Phosphate; Imido derivatives; Structures; X-ray diffraction

1. Introduction

Aluminophosphates (AlPOs) are the subject of much interest because they form microporous materials with possible applications as molecular sieves or in catalysis [1]. Several methods have been explored for generating AlPOs with different molecular architectures, viz. templation by fluoride ions [2] or organic ammonium cations [3,4]. Attention has also been directed recently to Group 13 phosphonates as soluble models for phosphate materials [5-13]. A possible alternative approach to the generation of AlPOs with unique properties is the substitution of one (or more) of the oxo (O^{2-}) ligands with isoelectronic imido (NR^{2-}) groups. The ability to change the size of the R groups allows the possibility of controlling the structure of the clusters formed by alkali-metal derivatives of heteroleptic imido/oxo anions with p-block element centers. In recent studies, we have demonstrated that subtle changes in the R group can significantly alter the size of the

[^0]fundamental building block in polycyclic lithium imidosulfites [14] and bis(imido)sulfates [15].

In a preliminary investigation of the synthesis and structures of imido derivatives of aluminophosphates, e.g. $\mathrm{Al}\left[\mathrm{OP}\left(\mathrm{N}^{t} \mathrm{Bu}\right)_{3}\right]$, we have carried out the reactions of $\left.\mathrm{OP}\left[\mathrm{NH}^{\prime} \mathrm{Bu}\right)\right]_{3}$ with (a) trimethylaluminum and (b) lithium aluminum hydride. We report here the synthesis, spectroscopic characterization and X-ray structures of $\left\{\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}(\mu-\mathrm{O})\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{AlMe}_{2}[\mathrm{OP}-\right.$ $\left.\left.\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]\right\}$ (1), $\operatorname{MeAl}\left[\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)(\mu-\mathrm{O}) \mathrm{P}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right]_{2} \quad$ (2), and $\left\{\operatorname{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{2}\right\}_{2}(\mathbf{3})$.

2. Experimental

Solvents (n-hexane, toluene ($\mathrm{Na} /$ benzophenone)) were dried and distilled before use. The reagents $\mathrm{NH}_{2}^{\mathrm{t}} \mathrm{Bu}$ and $\mathrm{Me}_{3} \mathrm{Al}$ (2.0 M in hexanes) were commercial samples (Aldrich) used as received. LiAlH_{4} was purified by extraction with diethyl ether followed by filtration and removal of the solvent from the filtrate under vacuum. The compound $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ was prepared from OPCl_{3} and the primary amine $\mathrm{NH}_{2}^{\mathrm{t}} \mathrm{Bu}$ by a modified literature procedure [16]. The handling of airand moisture-sensitive materials was performed under
an atmosphere of argon gas using standard Schlenk techniques or a glove box.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were collected with a Bruker AM200 spectrometer. ${ }^{31} \mathrm{P}$-NMR spectra were obtained with a Varian XL-200 spectrometer and chemical shifts are reported relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Solid-state ${ }^{13} \mathrm{C}$-, ${ }^{27} \mathrm{Al}$-, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ studies were performed using a Bruker AMX-300 spectrometer operating at $75.48,78.20$ and 121.50 MHz , respectively, with a BL4 probe and a spin range of $8-14 \mathrm{kHz}$; chemical shifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}, \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, respectively. The Analytical Services Laboratory of the Department of Chemistry, University of Calgary, provided elemental analyses.

2.1. Synthesis of $\left\{\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{N}^{t} B u\right)_{2} P(\mu-O)\left(N H^{t} B u\right)-\right.$ $\left.\mathrm{AlMe}_{2}\left[O P\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{3}\right]\right\}$ (1)

A clear solution of $\mathrm{Me}_{3} \mathrm{Al}(2 \mathrm{M}, 1.14 \mathrm{ml}, 2.28 \mathrm{mmol})$ was added dropwise to a stirred slurry of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ $(0.600 \mathrm{~g}, 2.28 \mathrm{mmol})$ in n-hexane or toluene $(20 \mathrm{ml})$ at $23{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 18 h . The volume of the solution was reduced by approximately one-half under vacuum. After 12 h at $23{ }^{\circ} \mathrm{C}$, colorless crystals were formed and the mother liquor was decanted by a cannula. The crystalline solid was dried under dynamic vacuum and identified as $\left\{\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{P}(\mu\right.$ $\left.\mathrm{O})\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{AlMe}_{2}\left[\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]\right\}(0.378 \mathrm{~g}, 0.59 \mathrm{mmol}$, $52 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.39\left(\mathrm{~d},{ }^{2} J_{\mathrm{PNH}}=10 \mathrm{~Hz}, \mathrm{~N} H\right)$, $2.27\left(\mathrm{~d},{ }^{2} J_{\mathrm{PNH}}=10 \mathrm{~Hz}, \mathrm{~N} H\right), 1.60\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.47(\mathrm{~s}$, $\left.9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.45\left(\mathrm{~s}, 27 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right),-0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}),-0.11$ (s, $3 \mathrm{H}, \mathrm{Me}$), $-0.28(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 3.27 (s), -0.49 (s). Anal. Found: C, 52.34; H, 11.48; N, 12.77. Calc. for $\mathrm{C}_{28} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{Al}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$: C, 52.65; H, 11.04; N, 13.16\%.

2.2. Synthesis of $\operatorname{MeAl}\left[\left(\mu-N^{t} B u\right)(\mu-O) P\left(N H^{t} B u\right)_{2}\right]_{2}$ (2)

A clear solution of $\mathrm{Me}_{3} \mathrm{Al}(2 \mathrm{M}, 1.14 \mathrm{ml}, 2.28 \mathrm{mmol})$ was added dropwise to a stirred slurry of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ $(1.200 \mathrm{~g}, 4.56 \mathrm{mmol})$ in n-hexane $(30 \mathrm{ml})$ at $23{ }^{\circ} \mathrm{C}$. The mixture was heated to reflux and stirred for 18 h . The volume of the solution was reduced to approximately one-quarter of the original volume under vacuum and the solution was then heated to $70{ }^{\circ} \mathrm{C}$ and allowed to deposit crystals for 3 h at $23^{\circ} \mathrm{C}$. The crystallization procedure was repeated twice to give $\operatorname{MeAl}\left[\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)(\mu-\right.$ O) $\left.\mathrm{P}\left(\mathrm{NH}^{\dagger} \mathrm{Bu}\right)_{2}\right]_{2}(1.100 \mathrm{~g}, 1.94 \mathrm{mmol}, 85 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.25$ (broad, $\left.\mathrm{s}, \mathrm{N} H\right), 1.55\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.30$ $\left(\mathrm{s}, 36 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right),-0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 11.50 (s). Anal. Found: C, 51.89; H, 10.51; N, 14.43. Calc. for $\mathrm{C}_{25} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{AlO}_{2} \mathrm{P}_{2}: \mathrm{C}, 52.98 ; \mathrm{H}, 10.85 ; \mathrm{N}$, 14.83%.

2.3. Synthesis of $\left\{\operatorname{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{t} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)\right]_{2}\right\}_{2}$ (3)

A slurry of $\mathrm{LiAlH}_{4}(0.190 \mathrm{~g}, 4.75 \mathrm{mmol})$ in toluene $(15 \mathrm{ml})$ was added dropwise to a slurry of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ $(2.50 \mathrm{~g}, 9.50 \mathrm{mmol})$ in toluene $(20 \mathrm{ml})$. Bubbles of H_{2} gas were evolved slowly and the mixture was stirred for 18 h at $23^{\circ} \mathrm{C}$. The solvent was removed from the cloudy solution under vacuum to give a fine pale-yellow powder, which was washed with toluene ($3 \times 10 \mathrm{ml}$). The remaining solvent was removed under vacuum and $\left\{\mathrm{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{2}\right\}_{2}(3)$ was obtained as a fine white powder ($2.330 \mathrm{~g}, 1.93 \mathrm{mmol}, 81 \%$). Clear plates of $3 . \mathrm{C}_{7} \mathrm{H}_{8}$ were obtained from a concentrated solution of $\mathbf{3}$ in toluene kept at room temperature for 8 days. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.67\left(\mathrm{~d}, 9 \mathrm{H},{ }^{4} J_{\mathrm{PNCCH}}=0.68 \mathrm{~Hz}\right.$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.58\left(\mathrm{~d}, 9 \mathrm{H},{ }^{4} J_{\mathrm{PNCCH}}=0.70 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.52(\mathrm{~d}, 9 \mathrm{H}$, $\left.{ }^{4} J_{\mathrm{PNCCH}}=0.69 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.47\left(\mathrm{~d}, 9 \mathrm{H},{ }^{4} J_{\mathrm{PNCCH}}=0.69\right.$ $\left.\mathrm{Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.45\left(\mathrm{~d}, 9 \mathrm{H},{ }^{4} J_{\mathrm{PNCCH}}=0.68 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.36(\mathrm{~s}$, $\left.9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{27} \mathrm{Al}-\mathrm{NMR}$ (solid state): $\delta-183.14$ ($W_{1 / 2}=$ $278 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (solid state): $\delta 52.65\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right.$, $51.35 \quad\left(2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 50.70 \quad\left(2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 50.18$ $\left.\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 36.19\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.39\left(\mathrm{C}_{(} \mathrm{CH}_{3}\right)_{3}\right), 34.02$ $\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.91\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}$ (solid state): δ 12.17, -4.88 . Anal. Found: C, 51.59; H, 10.04; $\mathrm{N}, 14.93$. Calc. for $\mathrm{C}_{55} \mathrm{H}_{120} \mathrm{~N}_{12} \mathrm{Al}_{2} \mathrm{Li}_{2} \mathrm{O}_{4} \mathrm{P}_{4}$: C, 51.79; H, 10.14; N, 15.10\%.

2.4. Crystal structures of $\mathbf{1}, \mathbf{2}$ and $\mathbf{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$

Crystal data for $\mathbf{1 , 2}$ and $\mathbf{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ are summarized in Table 1. All data collections were carried out with a Bruker AXS P4/RA/SMART 1000 CCD instrument using monochromated Mo $-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71073$ A).

1: Cell parameters were determined using Smart [17] software and refined with SAINT [18]. The structure was solved using the heavy atom method (Patterson) in the centrosymmetric space group Pnma (No. 62) (shelxs97, [19]) and refined by full-matrix least-squares method on F^{2} with shelxl-97-2 [20].

The nitrogen atom and one carbon atom of one $\mathrm{N}^{\prime} \mathrm{Bu}$ group ($\mathrm{N}(4 \mathrm{~A}), \mathrm{N}(4 \mathrm{~B}), \mathrm{C}(43 \mathrm{~A}), \mathrm{C}(43 \mathrm{~B})$) were disordered over two sites with partial occupancy factors of 0.5 each in both cases. The other non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically idealized positions and were not refined.

2 and $\mathbf{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$: The procedures used for data collection and the refinement of the structures of 2 and 3. $\mathrm{C}_{7} \mathrm{H}_{8}$ were the same as those described above for $\mathbf{1}$. Both structures were solved by direct methods. Three carbon atoms of the disordered toluene molecule in 3. $\mathrm{C}_{7} \mathrm{H}_{8}$ were positioned over two sites with partial occupancy factors of 0.50 each.

Table 1
Crystal data and structure refinement parameters for 1, 2 and $\mathbf{3}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3} \mathrm{C}_{7} \mathrm{H}_{8}$
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{Al}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{AlO}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{55} \mathrm{H}_{120} \mathrm{~N}_{12} \mathrm{Al}_{2} \mathrm{Li}_{2} \mathrm{O}_{4} \mathrm{P}_{4}$
Formula weight	638.80	566.72	1205.35
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$-80(2)$	$-80(2)$	$-80(2)$
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pnma $(\# 62)$	$I b a 2(\# 45)$	$P 2_{1} / n(\# 14)$
Unit cell dimensions			
$a(\AA)$	$25.1500(17)$	$19.561(3)$	$15.1850(8)$
$b(\AA)$	$14.7597(10)$	$11.028(2)$	$10.6573(6)$
$c(\AA)$	$11.0507(7)$	$16.023(3)$	$23.4217(11)$
$\beta\left({ }^{\circ}\right)$		$3456.2(11)$	$103.9232(9)$
$V\left(\AA^{3}\right)$	$4102.1(5)$	4	$3679.0(3)$
Z	4	1.089	1.088
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.034	0.180	0.173
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.178	2688	6968
Unique data	4371	2295	5662
Observed data	3390	165	370
Parameters refined	220	0.0426	0.0545
R	0.0653	0.1002	0.1597
$R_{\text {w }}$	0.1827		

$R_{1}=\left[\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right] /\left[\Sigma\left|F_{\mathrm{o}}\right|\right]$ for $\left[F_{\mathrm{o}}^{2}>2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right]^{e} . w R_{2}=\left\{\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /\left[\Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$ (all data).

3. Results and discussion

The reaction of $\mathrm{OP}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{3}$ with trimethylaluminum in a $1: 1$ molar ratio in hexane or toluene at $23^{\circ} \mathrm{C}$ produces a mixture of products. The major component, which was isolated in 52% yield, was identified by X-ray crystallography as $\left\{\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{P}(\mu-\right.$ $\left.\mathrm{O})\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{AlMe}_{2}\left[\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]\right\}$ (1). The structure of $\mathbf{1}$ is depicted in Fig. 1 and selected bond distances and bond angles are summarized in Table 2. The reagent $\mathrm{OP}\left(\mathrm{NH}^{+} \mathrm{Bu}\right)_{3}$ is doubly deprotonated by two equivalents of $\mathrm{Me}_{3} \mathrm{Al}$ to give the $\left[\mathrm{OP}\left(\mathrm{N}^{+} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\dagger} \mathrm{Bu}\right)\right]^{2-}$ dianion, which is N, N^{\prime}-chelated to one $\mathrm{Me}_{2} \mathrm{Al}^{+}$cation and connected in an O-monodentate fashion to the second $\mathrm{Me}_{2} \mathrm{Al}^{+}$cation. The coordination sphere of the latter Al center is completed by the neutral O-donor ligand $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$. The N, N^{\prime} bonding mode of $\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]^{2-}$ is reminiscent of the ligand behavior of $\left[\mathrm{O}_{2} \mathrm{~S}\left(\mathrm{~N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right]^{2-}$ in covalent $\mathrm{P}($ III $)$ derivatives [21,22].

As a result of a crystallographic mirror plane, an interesting feature of the structure of $\mathbf{1}$ is the coplanarity of the ten-atom sequence $\mathrm{C}(1) / \mathrm{C}(2), \mathrm{Al}(1), \mathrm{P}(1)$, $\mathrm{O}(1), \mathrm{Al}(2), \mathrm{O}(2), \mathrm{P}(2), \mathrm{N}(3)$ and $\mathrm{C}(30)$. The four-membered $\mathrm{AlN}_{2} \mathrm{P}$ ring is essentially planar with distorted tetrahedral geometries at $\mathrm{Al}(1)$ and $\mathrm{P}(1)$. The endocyclic bond angles \angle NAIN and \angle NPN are 77.62(16) and $95.2(2)^{\circ}$, respectively. The geometry at the bridging nitrogens is almost planar $\left(\Sigma \angle \mathrm{N}(2)=357.1^{\circ}\right)$ with $\angle \mathrm{P}(1) \mathrm{N}(2) \mathrm{Al}(1)=93.54(15)^{\circ}$. The $\mathrm{Al}-\mathrm{N}$ distance of 1.900 (3) \AA is typical for four-coordinate Al complexes [23]. The endocyclic bond length $[\mathrm{P}(1)-\mathrm{N}(2)]$ of 1.612(3)
\AA is significantly shorter than the exocyclic $\mathrm{P}(1)-\mathrm{N}(1)$ bond (1.657(3) Å). Surprisingly, there is no significant difference in the $\mathrm{Al}-\mathrm{O}$ distances involving the neutral $\mathrm{OP}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{3}$ ligand and the anionic $\left\{\mathrm{Me}_{2} \mathrm{Al}(\mu-\right.$ $\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{NH}^{t} \mathrm{Bu}\right)\right]^{-}$fragment whereas the $\mathrm{P}-\mathrm{O}$ distance in the former $(1.466(3) \AA)$ is, as expected, significantly shorter than that in the latter (1.539(3) A). The bond angles at $\mathrm{Al}(2)$ range from 101.04(15) ($\angle \mathrm{OAlO}$) to $114.1(5)^{\circ}$ ($\angle \mathrm{CAlC}$).

NMR data indicate that the solid-state structure of $\mathbf{1}$ is maintained in solution. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ exhibits three resonances for $\mathrm{N}^{\mathrm{t}} \mathrm{Bu}$ groups in the integrated area ratio 2:1:3 corresponding to the two

Fig. 1. ORTEP diagram of $\left\{\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{P}(\mu-\mathrm{O})\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{AlMe}_{2}-\right.$ $\left.\left[\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]\right\}$ (1). Ellipsoids are drawn at the 30% level. For clarity, only the α-carbon atoms of ${ }^{\mathrm{t}} \mathrm{Bu}$ groups are shown.

Table 2
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}^{\text {a }}$

Bond lengths			
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.539(3)$	$\mathrm{P}(1)-\mathrm{N}(1)$	$1.657(3)$
$\mathrm{P}(2)-\mathrm{O}(2)$	$1.466(3)$	$\mathrm{Al}(1)-\mathrm{C}(2)$	$1.988(6)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.612(3)$	$\mathrm{Al}(1)-\mathrm{C}(1)$	$1.990(6)$
$\mathrm{P}(2)-\mathrm{N}(3)$	$1.606(3)$	$\mathrm{Al}(2)-\mathrm{C}(3)$	$1.945(3)$
$\mathrm{P}(2)-\mathrm{N}(4 \mathrm{~A})$	$1.592(3)$		
$\mathrm{Al}(1)-\mathrm{N}(2)$	$1.900(3)$		
$\mathrm{Al}(2)-\mathrm{O}(2)$	$1.774(3)$		
$\mathrm{Al}(2)-\mathrm{O}(1)$	$1.773(3)$		$95.2(2)$
Bond angles			$716.62(16)$
$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(1)$	$100.94(17)$	$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(2)$	$116.10(17)$
$\mathrm{N}(1) \mathrm{P}(1) \mathrm{N}(2)$	$115.49(12)$	$\mathrm{N}(2) \mathrm{P}(1) \mathrm{N}(2)^{\mathrm{b}}$	$93.54(15)$
$\mathrm{N}(2) \mathrm{Al}(1) \mathrm{C}(1)$	$116.33(17)$	$\mathrm{N}(2) \mathrm{Al}(1) \mathrm{N}(2)^{\mathrm{b}}$	
$\mathrm{C}(2) \mathrm{Al}(1) \mathrm{C}(1)$	$110.93(3)$	$\mathrm{N}(2) \mathrm{Al}(1) \mathrm{C}(2)$	$116)$
$\mathrm{P}(1) \mathrm{O}(1) \mathrm{Al}(2)$	$145.4(2)$	$\mathrm{P}(1) \mathrm{N}(2) \mathrm{Al}(1)$	$93)$
$\mathrm{O}(2) \mathrm{Al}(2) \mathrm{C}(3)$	$108.7(2)$	$\mathrm{P}(2) \mathrm{O}(2) \mathrm{Al}(2)$	$161.0(2)$
$\mathrm{O}(1) \mathrm{Al}(2) \mathrm{O}(2)$	$101.04(15)$	$\mathrm{O}(1) \mathrm{Al}(2) \mathrm{C}(3)$	$111.7(2)$
		$\mathrm{C}(3) \mathrm{Al}(2) \mathrm{C}(3)^{\mathrm{b}}$	$114.1(5)$

${ }^{\text {a }}$ Symmetry transformation used to generate equivalent atoms.
${ }^{\mathrm{b}} x,-y+1 / 2, z$.

Fig. 2. ortep diagram of $\operatorname{MeAl}\left[\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)(\mu-\mathrm{O}) \mathrm{P}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{2}\right]_{2}$ (2). Ellipsoids are drawn at the 30% level. For clarity, only the α-carbon atoms of ${ }^{\mathrm{t}} \mathrm{Bu}$ groups are shown.

Table 3
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $2^{\text {a }}$

Bond lengths			
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.519(2)$	$\mathrm{P}(1)-\mathrm{N}(1)$	$1.606(4)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.645(3)$	$\mathrm{P}(1)-\mathrm{N}(3)$	$1.646(3)$
$\mathrm{Al}-\mathrm{N}(1)$	$1.928(2)$	$\mathrm{Al}-\mathrm{C}(1)$	$1.978(5)$
$\mathrm{Al}-\mathrm{O}(1)$	$1.9847(18)$		
Bond angles			
$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(1)$	$97.88(11)$	$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(2)$	$109.91(14)$
$\mathrm{N}(1) \mathrm{P}(1) \mathrm{N}(2)$	$121.86(13)$	$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(3)$	$117.56(13)$
$\mathrm{N}(1) \mathrm{P}(1) \mathrm{N}(3)$	$110.13(13)$	$\mathrm{N}(2) \mathrm{P}(1) \mathrm{N}(3)$	$100.65(14)$
$\mathrm{N}(1) \mathrm{AlN}(1)^{\mathrm{b}}$	$123.10(16)$	$\mathrm{N}(1) \mathrm{AlC}(1)$	$118.45(8)$
$\mathrm{N}(1) \mathrm{AlO}(1)$	$74.07(9)$	$\mathrm{N}(1)^{\mathrm{b}} \mathrm{AlO}(1)$	$96.84(9)$
$\mathrm{C}(1) \mathrm{AlO}(1)$	$99.39(7)$	$\mathrm{N}(1) \mathrm{AlO}(1)^{\mathrm{b}}$	$96.84(9)$
$\mathrm{O}(1) \mathrm{AlO}(1)^{\mathrm{b}}$	$161.21(13)$	$\mathrm{P}(1) \mathrm{O}(1) \mathrm{Al}$	$94.29(9)$
$\mathrm{P}(1) \mathrm{N}(1) \mathrm{Al}$	$93.73(10)$		

[^1]bridging $\mathrm{N}^{\mathrm{t}} \mathrm{Bu}$ groups, the terminal $\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}$ group, and the three $\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}$ groups of the $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{B}} \mathrm{Bu}\right)_{3}$ ligand, respectively. The latter resonance ($\delta 1.05$) is shifted upfield compared to that of the free ligand ($\delta 1.30$). Three resonances at $\delta-0.09,-0.11$ and -0.28 in the ratio 1:1:2 are observed for the two $\mathrm{Me}_{2} \mathrm{Al}$ units. The first two signals are attributed to the inequivalent methyl groups of the $\mathrm{Me}_{2} \mathrm{Al}^{+}$cation in the four-membered ring. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of $\mathbf{1}$ shows two equally intense resonances at $\delta 3.27$ and -0.09 , cf. δ 5.53 for $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

When the reaction of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{H}} \mathrm{Bu}\right)_{3}$ with trimethylaluminum is carried out in a 2:1 molar ratio in n-hexane at reflux or in toluene at $75^{\circ} \mathrm{C}$, the complex $\operatorname{MeAl}[(\mu$ $\left.\left.\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)(\mu-\mathrm{O}) \mathrm{P}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right]_{2}(2)$ is isolated in ca. 85% yield. The structure of $\mathbf{2}$ was determined by X-ray crystallography (see Fig. 2) and selected bond distances and bond angles are given in Table 3. Complex 2 consists of two monoanionic $\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right]^{-}$ligands, which are both N, O-chelated to the MeAl^{2+} dication. The aluminum atom is in a distorted trigonal bipyramidal geometry with equatorial bond angles $\angle \mathrm{NAIN}=123.1$ and \angle NAIC $=118.5^{\circ}$ and a distinctly non-linear axial arrangement, $\angle \mathrm{OAlO}=161.2^{\circ}$ (cf. $156.2-158.8^{\circ}$ for related five-coordinate aluminum complexes [24]). The $\mathrm{CH}_{3}-\mathrm{Al}$ unit occupies a crystallographic twofold axis. The four-membered AlNPO rings are essentially planar. The Al-O distance of 1.9847 (18) \AA falls outside the range of $1.779-1.928 \AA$ observed for 5 -coordinate Al complexes whereas the $\mathrm{Al}-\mathrm{N}$ distance of 1.928(2) \AA is typical [24]. The P-O bond length of 1.519(2) \AA is unexceptional and the endocyclic $d(\mathrm{P}-\mathrm{N})$ is ca. $0.04 \AA$ shorter than the mean value of the exocyclic $\mathrm{P}-\mathrm{N}$ bond length, as found for $\mathbf{1}$. The monoanionic ligand $\left[\left({ }^{\mathrm{H} u N H}\right)_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)\right]^{-}$subtends an angle of $74.07(9)^{\circ}$ at Al.

Consistent with the solid-state structure, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ shows three resonances at $\delta-0.09,1.30$ and 1.55 in the ratio 1:12:6 attributable to the MeAl unit, the four terminal $\mathrm{NH}^{+} \mathrm{Bu}$ groups, and the two bridging $\mathrm{N}^{\mathrm{t}} \mathrm{Bu}$ groups, respectively. The resonance for the NH protons appears as a broad singlet at $\delta 2.25$. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ exhibits a singlet at $\delta 11.50$.

In summary, as indicated in Scheme 1, the reaction of $\mathrm{OP}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{3}$ with $\mathrm{Me}_{3} \mathrm{Al}$ in n-hexane or toluene in a 1:1 molar ratio generates $\mathbf{1}$ as the major product. The presence of 2 (and other unidentified products) can be detected in the reaction mixture by ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}$-NMR spectroscopy. The formation of $\mathbf{2}$ is favored by increasing the temperature of the reaction and the yield of $\mathbf{2}$ is optimized, at ca. 85%, by using a $2: 1$ molar ratio of the reagents in boiling n-hexane.

In a previous study, we showed that the reagent LiAlH_{4} readily deprotonates $\mathrm{SO}_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)_{2}$ in THF at room temperature to give the single-strand polymer
$\left\{\mathrm{Li}(\mathrm{THF})_{2} \mathrm{Al}\left[\mathrm{SO}_{2}\left(\mathrm{~N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right]_{2}\right\}_{\infty}$ [15]. As an extension of this approach to complex imido/oxo anions of p-block elements, we attempted to triply deprotonate $\mathrm{OP}\left(\mathrm{NH}^{+} \mathrm{Bu}\right)_{3}$ by reaction with LiAlH_{4}. However, only the $\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)\right]^{2-}$ dianion is generated even after prolonged reflux in toluene with an excess of LiAlH_{4}. When this reaction is carried out in a 1:2 molar ratio, the complex $\left\{\mathrm{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{2}\right\}_{2}$ (3) is obtained in 80% yield. The structure of $3 \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ was determined by X-ray crystallography (see Fig. 3). Selected bond distances and bond angles are given in Table 4. Interestingly, the $\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{+} \mathrm{Bu}\right)\right]^{2-}$ ligand adopts two different chelating modes, N, N^{\prime} and

Scheme 1.

Fig. 3. ORTEP diagram of $\left\{\mathrm{LiAl}\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{2}\right\}_{2} \quad(3) \cdot \mathrm{C}_{7} \mathrm{H}_{8}$. Ellipsoids are drawn at the 30% level. For clarity, only the α-carbon atoms of ${ }^{\mathrm{t}} \mathrm{Bu}$ groups are shown. The toluene molecule is not included.

Table 4
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $3^{\text {a }}$

Bond lengths			
$\mathrm{P}(1)-\mathrm{N}(6)$	$1.558(2)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$1.6056(14)$
$\mathrm{P}(1)-\mathrm{N}(5)$	$1.650(2)$	$\mathrm{P}(1)-\mathrm{N}(4)$	$1.6538(17)$
$\mathrm{P}(2)-\mathrm{O}(2)$	$1.4931(15)$	$\mathrm{P}(2)-\mathrm{N}(1)$	$1.6500(18)$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.6515(18)$	$\mathrm{P}(2)-\mathrm{N}(3)$	$1.6588(18)$
$\mathrm{Al}-\mathrm{O}(1)$	$1.8055(15)$	$\mathrm{Al}-\mathrm{N}(2)$	$1.8348(18)$
$\mathrm{Al}-\mathrm{N}(1)$	$1.8408(18)$	$\mathrm{Al}-\mathrm{N}(4)$	$1.8518(18)$
$\mathrm{O}(1)-\mathrm{Li}(1)^{\mathrm{b}}$	$1.983(4)$	$\mathrm{O}(2)-\mathrm{Li}(1)$	$1.796(4)$
$\mathrm{N}(6)-\mathrm{Li}(1)^{\mathrm{b}}$	$2.000(4)$		
Bond angles			
$\mathrm{N}(6) \mathrm{P}(1) \mathrm{O}(1)$	$101.38(9)$	$\mathrm{N}(6) \mathrm{P}(1) \mathrm{N}(5)$	$115.99(11)$
$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(5)$	$112.15(9)$	$\mathrm{N}(6) \mathrm{P}(1) \mathrm{N}(4)$	$127.32(11)$
$\mathrm{O}(1) \mathrm{P}(1) \mathrm{N}(4)$	$92.56(8)$	$\mathrm{N}(5) \mathrm{P}(1) \mathrm{N}(4)$	$104.45(9)$
$\mathrm{O}(2) \mathrm{P}(2) \mathrm{N}(1)$	$117.68(9)$	$\mathrm{O}(2) \mathrm{P}(2) \mathrm{N}(2)$	$117.92(9)$
$\mathrm{N}(1) \mathrm{P}(2) \mathrm{N}(2)$	$91.62(9)$	$\mathrm{O}(2) \mathrm{P}(2) \mathrm{N}(3)$	$106.39(9)$
$\mathrm{N}(1) \mathrm{P}(2) \mathrm{N}(3)$	$112.01(9)$	$\mathrm{N}(2) \mathrm{P}(2) \mathrm{N}(3)$	$110.86(9)$
$\mathrm{O}(1) \mathrm{AlN}(2)$	$121.57(8)$	$\mathrm{O}(1) \mathrm{AlN}(1)$	$124.01(7)$
$\mathrm{N}(2) \mathrm{AlN}(1)$	$80.20(8)$	$\mathrm{O}(1) \mathrm{AlN}(4)$	$80.19(7)$
$\mathrm{N}(2) \mathrm{AlN}(4)$	$131.82(8)$	$\mathrm{N}(1) \mathrm{AlN}(4)$	$125.56(8)$
$\mathrm{P}(1) \mathrm{O}(1) \mathrm{Al}$	$95.19(7)$	$\mathrm{P}(1) \mathrm{O}(1) \mathrm{Li}(1)^{\mathrm{b}}$	$90.72(13)$
$\mathrm{AlO}(1) \mathrm{Li}(1)^{\mathrm{b}}$	$131.10(16)$	$\mathrm{P}(2) \mathrm{O}(2) \mathrm{Li}(1)$	$143.41(16)$
$\mathrm{P}(2) \mathrm{N}(1) \mathrm{Al}$	$93.99(9)$	$\mathrm{P}(2) \mathrm{N}(2) \mathrm{Al}$	$94.15(9)$
$\mathrm{O}(2) \mathrm{Li}(1) \mathrm{N}(6)$	$145.2(2)$	$\mathrm{O}(2) \mathrm{Li}(1) \mathrm{O}(1)^{\mathrm{b}}$	$135.30(2)$
$\mathrm{O}(1){ }^{\mathrm{b} L i}(1) \mathrm{N}(6)$	$75.85(15)$	$\mathrm{O}(2) \mathrm{Li}(1) \mathrm{P}(1)^{\mathrm{b}}$	$163.50(3)$
$\mathrm{P}(1) \mathrm{N}(4) \mathrm{Al}$	$91.85(8)$	$\mathrm{P}(1) \mathrm{N}(6) \mathrm{Li}(1)^{\mathrm{b}}$	$91.52(15)$

${ }^{\text {a }}$ Symmetry transformation used to generate equivalent atoms.
${ }^{\mathrm{b}}-x,-y+1,-z$.
N, O, towards the aluminum center in $\mathbf{3}$. The two halves of the centrosymmetric dimer are linked by two threecoordinate Li^{+}ions, which display O-monodentate coordination to the N, N^{\prime}-chelated ligand and O, N chelation of the other $\left[\mathrm{OP}\left(\mathrm{N}^{+} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\dagger} \mathrm{Bu}\right)\right]^{2-}$ dianion. Access to the cavity of the resulting twelve-membered $\mathrm{Al}_{2} \mathrm{P}_{2} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Li}_{2}$ ring is partially impeded by ${ }^{\mathrm{t}} \mathrm{Bu}$ substituents (on $\mathrm{N}(1)$).

As indicated in Table 4, one of the $\mathrm{P}-\mathrm{N}$ bond lengths $(\mathrm{P}(1)-\mathrm{N}(6))$ in $\mathbf{3}$ is ca. $0.1 \AA$ shorter than the other five $\mathrm{P}-\mathrm{N}$ bonds, which fall within the narrow range $1.650-$ $1.659 \AA$. Furthermore, the $\mathrm{P}(1)-\mathrm{O}(1)$ distance is substantially longer than the $\mathrm{P}(2)-\mathrm{O}(2)$ bond, $1.6056(14)$ versus $1.4931(15) \AA($ cf. $\quad d(\mathrm{P}=\mathrm{O})=1.5016(12) \AA$ in $\mathrm{Al}\left(\mathrm{NMe}_{2}\right)_{3} \cdot \mathrm{OPPh}_{3}$ [25]). Although this difference may be partly attributable to the different coordination numbers of the two oxygen atoms, 3 versus 2, it may also indicate delocalization of the negative charge of the complex anion $\left[{ }^{\mathrm{t}} \mathrm{BuN}\right)\left({ }^{\mathrm{t}} \mathrm{BuNH}\right) \mathrm{P}(\mu-\mathrm{O})\left(\mu-\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Al}-$ $\left.\left(\mu-\mathrm{N}^{+} \mathrm{Bu}\right)_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]^{-}$over the $\mathrm{N}(6)-\mathrm{P}(1)-\mathrm{O}(1)$ unit. The mean $\mathrm{Al}-\mathrm{N}$ and $\mathrm{Al}-\mathrm{O}$ bond distances of 1.842 and $1.805 \AA$, respectively, are typical for 4-coordinate Al [26,27]. There is a substantial difference of almost $0.2 \AA$ for the $\mathrm{Li}-\mathrm{O}$ distances involving the two- and three-coordinate oxygen atoms, as has been observed previously [28].

The four-membered $\mathrm{PN}_{2} \mathrm{Al}, \mathrm{PONAl}$ and PONLi are all almost planar with maximum deviations from planarity of $0.0125(7), 0.0284(7)$ and $0.0497(13) \AA$, respec-
tively. The $\left[\mathrm{OP}\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{NH}^{\mathrm{t}} \mathrm{Bu}\right)\right]^{2-}$ ligands subtend identical bond angles of 80.2° at Al via either N, O or N, N chelation. The endocyclic bond angle $\angle \mathrm{OLiN}$ is $75.85(15)^{\circ}$.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ shows six equally intense resonances in the region δ 1.36-1.67 corresponding to the six inequivalent ${ }^{\text {t }} \mathrm{Bu}$ groups attached to nitrogen atoms $\mathrm{N}(1)-\mathrm{N}(6)$, suggesting that the solid-state structure is maintained in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution. The solid-state ${ }^{31} \mathrm{P}$-NMR spectrum exhibits two resonances at $\delta 12.17$ and -4.88 and the solid-state ${ }^{27}$ AlNMR spectrum revealed one signal at $\delta-183.1$.

4. Conclusions

These preliminary studies of imido analogs of aluminophosphate show that the AlPO analog Al[OP$\left.\left(\mathrm{N}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]$ is not accessible from the reaction of OP[$\mathrm{NH}^{\mathrm{t}}-$ $\mathrm{Bu}]_{3}$ and trimethylaluminum. Partial deprotonation occurs to give the anions $\left[\mathrm{OP}\left(\mathrm{N}^{t} \mathrm{Bu}\right)_{x}\left(\mathrm{NH}^{t} \mathrm{Bu}\right)_{3-x}\right]^{x-}$ $(x=1,2)$ which engage in O, N or N, N chelation to the aluminum center. The prevalence of four-membered ring formation in $\mathbf{1 - 3}$, in contrast to the eight-membered rings observed for aluminophosphonates [29], likely results from the steric influence of bulky ${ }^{\mathrm{t}} \mathrm{Bu}$ groups. Future attempts to generate imido analogs of AlPO materials will target derivatives with a lower N/O ratio, e.g. $\mathrm{Al}\left[\mathrm{O}_{3} \mathrm{P}(\mathrm{NR})\right]$, and smaller R groups.

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 162602, 162603 and 162604 for compounds 1, 2 and 3, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-1223-336033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank Dr R. MacDonald (University of Alberta) for the data collections for 1,2 and $\mathbf{3}$ and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. Helpful discussions about the structure of $\mathbf{1}$ with Dr M. Parvez (University of Calgary) are gratefully acknowledged.

References

[1] For a review see: A.K. Cheetham, G. Ferey, T. Louseau, Angew. Chem. Int. Ed. Engl. 38 (1999) 3268.
[2] Y. Yang, J. Pinkas, M. Schäfer, H.W. Roesky, Angew. Chem. Int. Ed. Engl. 37 (1998) 2650.
[3] I.D. Williams, Q. Gao, J. Chen, L.-Y. Ngai, Z. Lin, R. Xu, Chem. Commun. (1996) 1781.
[4] W. Yan, J. Yu, Z. Shi, R. Xu, Inorg. Chem. 40 (2001) 379.
[5] M.G. Walawalkar, H.W. Roesky, R. Murugavel, Acc. Chem. Res. 32 (1999) 117.
[6] M.R. Mason, J. Cluster Sci. 9 (1998) 1.
[7] Y. Yang, M.G. Walawalkar, J. Pinkas, H.W. Roesky, H.-G. Schmidt, Angew. Chem. Int. Ed. Engl. 37 (1998) 96.
[8] Y. Yang, H.-G. Schmidt, M. Noltemeyer, J. Pinkas, H.W. Roesky, J. Chem. Soc. Dalton. Trans. (1996) 3609.
[9] M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky, H.-G. Schmidt, J. Am. Chem. Soc. 119 (1997) 4656.
[10] M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky, H.-G. Schmidt, Organometallics 16 (1997) 516.
[11] K. Dimert, U. Englert, W. Kuchen, F. Sandt, Angew. Chem. 109 (1997) 251 (Angew. Chem. Int. Ed. Engl. 36 (1997) 241).
[12] M.R. Mason, M.S. Mashuta, J.F. Richardson, Angew. Chem. 109 (1997) 239 (Angew. Chem. Int. Ed. Engl. 36 (1997) 239).
[13] A. Keys, S. Bott, A.R. Barron, Chem. Commun. (1996) 2339.
[14] J.K. Brask, T. Chivers, M. Parvez, G. Schatte, Angew. Chem. Int. Ed. Engl. 36 (1997) 1986.
[15] P. Blais, J.K. Brask, T. Chivers, G. Schatte, Inorg. Chem. 40 (2001) 384.
[16] R.R. Holmes, J.A. Forstner, Inorg. Chem. 2 (1963) 380.
[17] smart version 5.0: Software for the CD Detector System, Bruker AXS, Inc., Madison, WI, 1998.
[18] SAINT version 5.0: Software for the CCD Detector System, Bruker AXS, Inc., Madison, WI, 1998.
[19] G.M. Sheldrick, Shelxs-97: Program for the Solution of Crystal Structures, Universität of Göttingen, Göttingen, Germany, 1997.
[20] G.M. Sheldrick, Shelxs-97-2: Program for the Solution of Crystal Structures, Universität of Göttingen, Göttingen, Germany, 1997, Function minimized: $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$.
[21] E. Flück, H. Riffel, H. Richter, Phosphorus and Sulfur 4 (1985) 273.
[22] A. Cowley, S.K. Mehrotra, H.W. Roesky, Inorg. Chem. 20 (1981) 712.
[23] (a) J.K. Brask, T. Chivers, G.P.A. Yap, Chem. Commun. (1998) 2543;
(b) J.K. Brask, T. Chivers, G. Schatte, G.P.A. Yap, Organometallics 19 (2000) 5683.
[24] (a) J.P. Corden, W. Errington, P. Moore, M.G.H. Wallbridge, Chem. Commun. (1999) 323;
(b) J.P. Duxburg, A. Cowley, M. Thornton-Pett, L. Wantz, J.N.D. Warner, R. Gretrex, D. Brown, T.P. Kee, Tetrahedron Lett. 40 (1999) 4403;
(c) W. Liu, A. Hassan, S. Wang, Organometallics 16 (1997) 4257;
(d) J. Jewinski, J. Zachara, T. Kopen, Z. Ochal, Polyhedron 16 (1997) 1337;
(e) D.A. Atwood, M.S. Hill, J.A. Jegier, D. Rutherford, Organometallics 16 (1997) 2659.
[25] J. Pinkas, H. Wessel, Y. Yang, M.L. Montero, M. Noltemeyer, M. Fröba, H.W. Roesky, Inorg. Chem. 37 (1998) 2450.
[26] M.S. Hill, D.A. Atwood, Main Group Chem. 2 (1998) 285.
[27] H. Nöth, A. Schlegel, J. Knizek, I. Krossing, W. Ponikwar, T. Seifert, Chem. Eur. J. 4 (1998) 2191.
[28] J.K. Brask, T. Chivers, M. Parvez, G.P.A. Yap, Inorg. Chem. 38 (1999) 3594.
[29] M.R. Mason, R.M. Mathews, M.S. Mashuta, J.F. Richardson, Inorg. Chem. 35 (1996) 5756.

[^0]: * Corresponding author. Tel.: + 1-403-220-5741; fax: + 1-403-2899488.

 E-mail address: chivers@ucalgary.ca (T. Chivers).

[^1]: ${ }^{\text {a }}$ Symmetry transformation used to generate equivalent atoms.
 ${ }^{\mathrm{b}}-x,-y+1, z$.

