

Journal of Organometallic Chemistry 646 (2002) 107-112

www.elsevier.com/locate/jorganchem

Imido analogs of aluminophosphates: syntheses and X-ray structures of $\{\text{LiAl}[OP(N^tBu)_2(NH^tBu)]_2\}_2$ and the mono- and di-methylaluminum complexes of the anions $[OP(N^tBu)_x(NH^tBu)_{3-x}]^{x-1}$ (x = 1, 2)

Pierre Blais, Tristram Chivers *, Gabriele Schatte, Mark Krahn

Department of Chemistry, University of Calgary, Calgary, Alta., Canada T2N 1N4

Received 3 May 2001; accepted 5 July 2001

Abstract

The reaction of OP(NH^tBu)₃ with trimethylaluminum in 1:1 or 2:1 molar ratios in hydrocarbon solvents yields the complexes $\{Me_2Al(\mu-N^tBu)_2P(\mu-O)(NH^tBu)AlMe_2[OP(NH^tBu)_3]\}$ (1) and $MeAl[(\mu-N^tBu)(\mu-O)P(NH^tBu)_2]_2$ (2). The dimeric complex $\{LiAl[OP(N^tBu)_2(NH^tBu)]_2\}_2$ (3) is obtained by treatment of OP(NH^tBu)₃ with LiAlH₄ in toluene. Complexes 1–3 were characterized by multinuclear NMR spectroscopy and by X-ray crystallography, which revealed different bonding modes for the anions $[OP(N^tBu)(NH^tBu)_2]^2^-$ and $[OP(N^tBu)_2(NH^tBu)]^2^-$. © 2002 Published by Elsevier Science B.V.

Keywords: Aluminum; Phosphate; Imido derivatives; Structures; X-ray diffraction

1. Introduction

Aluminophosphates (AlPOs) are the subject of much interest because they form microporous materials with possible applications as molecular sieves or in catalysis [1]. Several methods have been explored for generating AlPOs with different molecular architectures, viz. templation by fluoride ions [2] or organic ammonium cations [3,4]. Attention has also been directed recently to Group 13 phosphonates as soluble models for phosphate materials [5-13]. A possible alternative approach to the generation of AlPOs with unique properties is the substitution of one (or more) of the oxo (O^{2-}) ligands with isoelectronic imido (NR^{2-}) groups. The ability to change the size of the R groups allows the possibility of controlling the structure of the clusters formed by alkali-metal derivatives of heteroleptic imido/oxo anions with p-block element centers. In recent studies, we have demonstrated that subtle changes in the R group can significantly alter the size of the

fundamental building block in polycyclic lithium imidosulfites [14] and bis(imido)sulfates [15].

In a preliminary investigation of the synthesis and structures of imido derivatives of aluminophosphates, e.g. $Al[OP(N^tBu)_3]$, we have carried out the reactions of $OP[NH^tBu]_3$ with (a) trimethylaluminum and (b) lithium aluminum hydride. We report here the synthesis, spectroscopic characterization and X-ray structures of $\{Me_2Al(\mu-N^tBu)_2P(\mu-O)(NH^tBu)AlMe_2[OP-(NH^tBu)_3]\}$ (1), $MeAl[(\mu-N^tBu)(\mu-O)P(NH^tBu)_2]_2$ (2), and $\{LiAl[OP(N^tBu)_2(NH^tBu)]_2\}_2$ (3).

2. Experimental

Solvents (*n*-hexane, toluene (Na/benzophenone)) were dried and distilled before use. The reagents NH_2^tBu and Me_3Al (2.0 M in hexanes) were commercial samples (Aldrich) used as received. LiAlH₄ was purified by extraction with diethyl ether followed by filtration and removal of the solvent from the filtrate under vacuum. The compound OP(NH^tBu)₃ was prepared from OPCl₃ and the primary amine NH₂^LBu by a modified literature procedure [16]. The handling of airand moisture-sensitive materials was performed under

^{*} Corresponding author. Tel.: +1-403-220-5741; fax: +1-403-289-9488.

E-mail address: chivers@ucalgary.ca (T. Chivers).

an atmosphere of argon gas using standard Schlenk techniques or a glove box.

¹H-NMR spectra were collected with a Bruker AM-200 spectrometer. ³¹P-NMR spectra were obtained with a Varian XL-200 spectrometer and chemical shifts are reported relative to 85% H₃PO₄. Solid-state ¹³C-, ²⁷Al-, and ³¹P-NMR studies were performed using a Bruker AMX-300 spectrometer operating at 75.48, 78.20 and 121.50 MHz, respectively, with a BL4 probe and a spin range of 8–14 kHz; chemical shifts are reported relative to Me₄Si, Al(NO₃)₃ and Na₂HPO₄, respectively. The Analytical Services Laboratory of the Department of Chemistry, University of Calgary, provided elemental analyses.

2.1. Synthesis of $\{Me_2Al(\mu-N^tBu)_2P(\mu-O)(NH^tBu)-AlMe_2[OP(NH^tBu)_3]\}$ (1)

A clear solution of Me₃Al (2 M, 1.14 ml, 2.28 mmol) was added dropwise to a stirred slurry of OP(NH^tBu)₃ (0.600 g, 2.28 mmol) in *n*-hexane or toluene (20 ml) at 23 °C and the mixture was stirred for 18 h. The volume of the solution was reduced by approximately one-half under vacuum. After 12 h at 23 °C, colorless crystals were formed and the mother liquor was decanted by a cannula. The crystalline solid was dried under dynamic vacuum and identified as $\{Me_2Al(\mu-N^tBu)_2P(\mu-$ O)(NH^tBu)AlMe₂[OP(NH^tBu)₃]} (0.378 g, 0.59 mmol, 52%). ¹H-NMR (C₆D₆): δ 2.39 (d, ²J_{PNH} = 10 Hz, NH), 2.27 (d, ${}^{2}J_{PNH} = 10$ Hz, NH), 1.60 (s, 18H, ${}^{t}Bu$), 1.47 (s, 9H, ^tBu), 1.45 (s, 27H, ^tBu), -0.09 (s, 3H, Me), -0.11(s, 3H, Me), -0.28 (s, 6H, Me). ³¹P-NMR (C₆D₆): δ 3.27 (s), -0.49 (s). Anal. Found: C, 52.34; H, 11.48; N, 12.77. Calc. for C₂₈H₇₀N₆Al₂O₂P₂: C, 52.65; H, 11.04; N, 13.16%.

2.2. Synthesis of $MeAl[(\mu-N^{t}Bu)(\mu-O)P(NH^{t}Bu)_{2}]_{2}$ (2)

A clear solution of Me_3Al (2 M, 1.14 ml, 2.28 mmol) was added dropwise to a stirred slurry of $OP(NH^{1}Bu)_{3}$ (1.200 g, 4.56 mmol) in *n*-hexane (30 ml) at 23 °C. The mixture was heated to reflux and stirred for 18 h. The volume of the solution was reduced to approximately one-quarter of the original volume under vacuum and the solution was then heated to 70 °C and allowed to deposit crystals for 3 h at 23 °C. The crystallization procedure was repeated twice to give MeAl[(μ -N'Bu)(μ -O)P(NH'Bu)₂]₂ (1.100 g, 1.94 mmol, 85%). ¹H-NMR (C₆D₆): δ 2.25 (broad, s, N*H*), 1.55 (s, 18H, 'Bu), 1.30 (s, 36H, 'Bu), -0.09 (s, 3H, Me). ³¹P-NMR (C₆D₆): δ 11.50 (s). Anal. Found: C, 51.89; H, 10.51; N, 14.43. Calc. for C₂₅H₆₁N₆AlO₂P₂: C, 52.98; H, 10.85; N, 14.83%.

2.3. Synthesis of ${LiAl[OP(N^{t}Bu)_{2}(NH^{t}Bu)]_{2}}_{2}$ (3)

A slurry of LiAlH₄ (0.190 g, 4.75 mmol) in toluene (15 ml) was added dropwise to a slurry of OP(NH^tBu)₃ (2.50 g, 9.50 mmol) in toluene (20 ml). Bubbles of H₂ gas were evolved slowly and the mixture was stirred for 18 h at 23 °C. The solvent was removed from the cloudy solution under vacuum to give a fine pale-yellow powder, which was washed with toluene $(3 \times 10 \text{ ml})$. The remaining solvent was removed under vacuum and ${\rm LiAl[OP(N^tBu)_2(NH^tBu)]_2}_2$ (3) was obtained as a fine white powder (2.330 g, 1.93 mmol, 81%). Clear plates of $3 \cdot C_7 H_8$ were obtained from a concentrated solution of 3 in toluene kept at room temperature for 8 days. ¹H-NMR (C₆D₆): δ 1.67 (d, 9H, ⁴J_{PNCCH} = 0.68 Hz, ¹Bu), 1.58 (d, 9H, ⁴J_{PNCCH} = 0.70 Hz, ¹Bu), 1.52 (d, 9H, ${}^{4}J_{\text{PNCCH}} = 0.69$ Hz, 'Bu), 1.47 (d, 9H, ${}^{4}J_{\text{PNCCH}} = 0.69$ Hz, ^tBu), 1.45 (d, 9H, ${}^{4}J_{PNCCH} = 0.68$ Hz, ^tBu), 1.36 (s, 9H, ^tBu). ²⁷Al-NMR (solid state): $\delta - 183.14$ ($W_{1/2} =$ 278 Hz). ¹³C-NMR (solid state): δ 52.65 (C(CH₃)₃), 51.35 $(2 \times C(CH_3)_3)$, 50.70 $(2 \times C(CH_3)_3)$, 50.18 $(C(CH_3)_3)$, 36.19 $(C(CH_3)_3)$, 34.39 $(C(CH_3)_3)$, 34.02 $(2 \times C(CH_3)_3)$, 32.91 $(2 \times C(CH_3)_3)$. ³¹P-NMR (solid state): δ 12.17, -4.88. Anal. Found: C, 51.59; H, 10.04; N, 14.93. Calc. for C₅₅H₁₂₀N₁₂Al₂Li₂O₄P₄: C, 51.79; H, 10.14; N, 15.10%.

2.4. Crystal structures of 1, 2 and $3 \cdot C_7 H_8$

Crystal data for 1, 2 and $3 \cdot C_7 H_8$ are summarized in Table 1. All data collections were carried out with a Bruker AXS P4/RA/SMART 1000 CCD instrument using monochromated Mo-K_a radiation ($\lambda = 0.71073$ Å).

1: Cell parameters were determined using SMART [17] software and refined with SAINT [18]. The structure was solved using the heavy atom method (Patterson) in the centrosymmetric space group *Pnma* (No. 62) (SHELXS-97, [19]) and refined by full-matrix least-squares method on F^2 with SHELXL-97-2 [20].

The nitrogen atom and one carbon atom of one $N^{t}Bu$ group (N(4A), N(4B), C(43A), C(43B)) were disordered over two sites with partial occupancy factors of 0.5 each in both cases. The other non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically idealized positions and were not refined.

2 and $3 \cdot C_7 H_8$: The procedures used for data collection and the refinement of the structures of **2** and $3 \cdot C_7 H_8$ were the same as those described above for **1**. Both structures were solved by direct methods. Three carbon atoms of the disordered toluene molecule in $3 \cdot C_7 H_8$ were positioned over two sites with partial occupancy factors of 0.50 each.

Table 1 Crystal data and structure refinement parameters for $1,\,2$ and 3

	1	2	$3 \cdot C_7 H_8$
Empirical formula	C ₂₈ H ₇₀ N ₆ Al ₂ O ₂ P ₂	C ₂₅ H ₆₁ N ₆ AlO ₂ P ₂	C55H120N12Al2Li2O4P4
Formula weight	638.80	566.72	1205.35
Temperature (°C)	-80(2)	-80(2)	-80(2)
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pnma (#62)	Iba2 (#45)	$P2_1/n \ (\# 14)$
Unit cell dimensions			
a (Å)	25.1500(17)	19.561(3)	15.1850(8)
b (Å)	14.7597(10)	11.028(2)	10.6573(6)
c (Å)	11.0507(7)	16.023(3)	23.4217(11)
β (°)			103.9232(9)
$V(Å^3)$	4102.1(5)	3456.2(11)	3679.0(3)
Ζ	4	4	2
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.034	1.089	1.088
Absorption coefficient (mm^{-1})	0.178	0.180	0.173
Unique data	4371	2688	6968
Observed data	3390	2295	5662
Parameters refined	220	165	370
R	0.0653	0.0426	0.0545
<i>R</i> _w	0.1827	0.1002	0.1597

 $R_1 = [\Sigma | |F_o| - |F_c| |] / [\Sigma | F_o|] \text{ for } [F_o^2 > 2\sigma (F_o^2)]^e. \ wR_2 = \{ [\Sigma w (F_o^2 - F_c^2)^2] / [\Sigma w (F_o^2)^2] \}^{1/2} \text{ (all data)}.$

3. Results and discussion

The reaction of OP(NH^tBu)₃ with trimethylaluminum in a 1:1 molar ratio in hexane or toluene at 23 °C produces a mixture of products. The major component, which was isolated in 52% yield, was identified by X-ray crystallography as $\{Me_2Al(\mu-N^tBu)_2P(\mu-N^tBu)_$ O)(NH^tBu)AlMe₂[OP(NH^tBu)₃] $\{$ (1). The structure of 1 is depicted in Fig. 1 and selected bond distances and bond angles are summarized in Table 2. The reagent OP(NH^tBu)₃ is doubly deprotonated by two equivalents of Me₃Al to give the $[OP(N^{t}Bu)_{2}(NH^{t}Bu)]^{2-}$ dianion, which is N,N'-chelated to one Me₂Al⁺ cation and connected in an O-monodentate fashion to the second Me_2Al^+ cation. The coordination sphere of the latter Al center is completed by the neutral O-donor ligand $OP(NH^{t}Bu)_{3}$. The N,N'bonding mode of [OP(N^tBu)₂(NH^tBu)]²⁻ is reminiscent of the ligand behavior of $[O_2S(N^tBu)_2]^2$ in covalent P(III) derivatives [21,22].

As a result of a crystallographic mirror plane, an interesting feature of the structure of **1** is the coplanarity of the ten-atom sequence C(1)/C(2), Al(1), P(1), O(1), Al(2), O(2), P(2), N(3) and C(30). The four-membered AlN_2P ring is essentially planar with distorted tetrahedral geometries at Al(1) and P(1). The endocyclic bond angles $\angle NAlN$ and $\angle NPN$ are 77.62(16) and 95.2(2)°, respectively. The geometry at the bridging nitrogens is almost planar ($\Sigma \angle N(2) = 357.1^{\circ}$) with $\angle P(1)N(2)Al(1) = 93.54(15)^{\circ}$. The Al-N distance of 1.900(3) Å is typical for four-coordinate Al complexes [23]. The endocyclic bond length [P(1)–N(2)] of 1.612(3)

Å is significantly shorter than the exocyclic P(1)–N(1) bond (1.657(3) Å). Surprisingly, there is no significant difference in the A1–O distances involving the neutral OP(NH'Bu)₃ ligand and the anionic {Me₂Al(μ -N'Bu)₂P(O)(NH'Bu)]⁻ fragment whereas the P–O distance in the former (1.466(3) Å) is, as expected, significantly shorter than that in the latter (1.539(3) Å). The bond angles at Al(2) range from 101.04(15) (\angle OAIO) to 114.1(5)° (\angle CAIC).

NMR data indicate that the solid-state structure of **1** is maintained in solution. The ¹H-NMR spectrum of **1** in C_6D_6 exhibits three resonances for N^tBu groups in the integrated area ratio 2:1:3 corresponding to the two

Fig. 1. ORTEP diagram of $\{Me_2Al(\mu-N^tBu)_2P(\mu-O)(NH^tBu)AlMe_2-[OP(NH^tBu)_3]\}$ (1). Ellipsoids are drawn at the 30% level. For clarity, only the α -carbon atoms of 'Bu groups are shown.

Table 2 Selected bond lengths (Å) and bond angles (°) for 1^{a}

Bond lengths			
P(1)–O(1)	1.539(3)	P(1)-N(1)	1.657(3)
P(2)–O(2)	1.466(3)	Al(1)-C(2)	1.988(6)
P(1) - N(2)	1.612(3)	Al(1)-C(1)	1.990(6)
P(2)–N(3)	1.606(3)	Al(2)–C(3)	1.945(3)
P(2)-N(4A)	1.592(3)		
Al(1) - N(2)	1.900(3)		
Al(2)–O(2)	1.774(3)		
Al(2)–O(1)	1.773(3)		
Bond angles			
O(1)P(1)N(1)	100.94(17)	O(1)P(1)N(2)	115.34(14)
N(1)P(1)N(2)	115.49(12)	N(2)P(1)N(2) ^b	95.2(2)
N(2)Al(1)C(1)	116.33(17)	N(2)Al(1)N(2) b	77.62(16)
C(2)Al(1)C(1)	110.93(3)	N(2)Al(1)C(2)	116.10(17)
P(1)O(1)Al(2)	145.4(2)	P(1)N(2)Al(1)	93.54(15)
O(2)Al(2)C(3)	108.7(2)	P(2)O(2)Al(2)	161.0(2)
O(1)Al(2)O(2)	101.04(15)	O(1)Al(2)C(3)	111.7(2)
		C(3)Al(2)C(3) ^b	114.1(5)

^a Symmetry transformation used to generate equivalent atoms. ^b x, -y+1/2, z.

Fig. 2. ORTEP diagram of MeAl[$(\mu$ -N'Bu) $(\mu$ -O)P(NH'Bu)₂]₂ (2). Ellipsoids are drawn at the 30% level. For clarity, only the α -carbon atoms of 'Bu groups are shown.

Table 3 Selected bond lengths (Å) and bond angles (°) for 2^{a}

Bond lengths			
P(1)-O(1)	1.519(2)	P(1)-N(1)	1.606(4)
P(1)-N(2)	1.645(3)	P(1)–N(3)	1.646(3)
Al-N(1)	1.928(2)	Al-C(1)	1.978(5)
Al-O(1)	1.9847(18)		
Bond angles			
O(1)P(1)N(1)	97.88(11)	O(1)P(1)N(2)	109.91(14)
N(1)P(1)N(2)	121.86(13)	O(1)P(1)N(3)	117.56(13)
N(1)P(1)N(3)	110.13(13)	N(2)P(1)N(3)	100.65(14)
N(1)AlN(1) ^b	123.10(16)	N(1)AIC(1)	118.45(8)
N(1)AlO(1)	74.07(9)	N(1) ^b AlO(1)	96.84(9)
C(1)AlO(1)	99.39(7)	$N(1)AlO(1)^{b}$	96.84(9)
O(1)AlO(1) ^b	161.21(13)	P(1)O(1)A1	94.29(9)
P(1)N(1)A1	93.73(10)		

^a Symmetry transformation used to generate equivalent atoms. ^b -x, -y+1, z. bridging N'Bu groups, the terminal NH'Bu group, and the three NH'Bu groups of the OP(NH'Bu)₃ ligand, respectively. The latter resonance (δ 1.05) is shifted upfield compared to that of the free ligand (δ 1.30). Three resonances at δ – 0.09, – 0.11 and – 0.28 in the ratio 1:1:2 are observed for the two Me₂Al units. The first two signals are attributed to the inequivalent methyl groups of the Me₂Al⁺ cation in the four-membered ring. The ³¹P-NMR spectrum of **1** shows two equally intense resonances at δ 3.27 and – 0.09, cf. δ 5.53 for OP(NH'Bu)₃ in C₆D₆.

When the reaction of OP(NH^tBu)₃ with trimethylaluminum is carried out in a 2:1 molar ratio in n-hexane at reflux or in toluene at 75 °C, the complex MeAl[(µ- $N^{t}Bu)(\mu-O)P(NH^{t}Bu)_{2}$ (2) is isolated in ca. 85% yield. The structure of 2 was determined by X-ray crystallography (see Fig. 2) and selected bond distances and bond angles are given in Table 3. Complex 2 consists of two monoanionic [OP(N^tBu)(NH^tBu)₂]⁻ ligands, which are both N,O-chelated to the MeAl²⁺ dication. The aluminum atom is in a distorted trigonal bipyramidal geometry with equatorial bond angles $\angle NAIN = 123.1$ and \angle NAIC = 118.5° and a distinctly non-linear axial arrangement, $\angle OAlO = 161.2^{\circ}$ (cf. 156.2–158.8° for related five-coordinate aluminum complexes [24]). The CH₃-Al unit occupies a crystallographic twofold axis. The four-membered AlNPO rings are essentially planar. The Al-O distance of 1.9847(18) Å falls outside the range of 1.779–1.928 Å observed for 5-coordinate Al complexes whereas the Al-N distance of 1.928(2) Å is typical [24]. The P–O bond length of 1.519(2) Å is unexceptional and the endocyclic d(P-N) is ca. 0.04 Å shorter than the mean value of the exocyclic P-N bond length, as found for 1. The monoanionic ligand $[(^{t}BuNH)_{2}P(O)(N^{t}Bu)]^{-}$ subtends an angle of 74.07(9)° at Al.

Consistent with the solid-state structure, the ¹H-NMR spectrum of **2** in C₆D₆ shows three resonances at $\delta - 0.09$, 1.30 and 1.55 in the ratio 1:12:6 attributable to the MeAl unit, the four terminal NH^tBu groups, and the two bridging N^tBu groups, respectively. The resonance for the NH protons appears as a broad singlet at δ 2.25. The ³¹P-NMR spectrum of **2** exhibits a singlet at δ 11.50.

In summary, as indicated in Scheme 1, the reaction of OP(NH^tBu)₃ with Me₃Al in *n*-hexane or toluene in a 1:1 molar ratio generates **1** as the major product. The presence of **2** (and other unidentified products) can be detected in the reaction mixture by ¹H- and ³¹P-NMR spectroscopy. The formation of **2** is favored by increasing the temperature of the reaction and the yield of **2** is optimized, at ca. 85%, by using a 2:1 molar ratio of the reagents in boiling *n*-hexane.

In a previous study, we showed that the reagent $LiAlH_4$ readily deprotonates $SO_2(NH^4Bu)_2$ in THF at room temperature to give the single-strand polymer

 ${\rm Li(THF)_2Al[SO_2(N^tBu)_2]_2}_{\infty}$ [15]. As an extension of this approach to complex imido/oxo anions of p-block elements, we attempted to triply deprotonate OP(NH^tBu)_3 by reaction with LiAlH₄. However, only the [OP(N^tBu)_2(NH^tBu)]² – dianion is generated even after prolonged reflux in toluene with an excess of LiAlH₄. When this reaction is carried out in a 1:2 molar ratio, the complex {LiAl[OP(N^tBu)_2(NH^tBu)]_2}_2 (3) is obtained in 80% yield. The structure of $3 \cdot C_7 H_8$ was determined by X-ray crystallography (see Fig. 3). Selected bond distances and bond angles are given in Table 4. Interestingly, the [OP(N^tBu)_2(NH^tBu)]² – ligand adopts two different chelating modes, *N*,*N'* and

Fig. 3. ORTEP diagram of $\{LiAl[OP(N^{t}Bu)_{2}(NH^{t}Bu)]_{2}\}_{2}$ (3)·C₇H₈. Ellipsoids are drawn at the 30% level. For clarity, only the α -carbon atoms of ^tBu groups are shown. The toluene molecule is not included.

Table 4 Selected bond lengths (Å) and bond angles (°) for 3^{a}

P(1) = N(6) 1.558	(2) $P(1)-O(1)$	1 (05((14)
1(1) 1(0) 1.000		1.6056(14)
P(1)-N(5) 1.650	(2) $P(1)-N(4)$	1.6538(17)
P(2)-O(2) 1.493	1(15) P(2)–N(1)	1.6500(18)
P(2)-N(2) 1.651	5(18) P(2)–N(3)	1.6588(18)
Al-O(1) 1.805	5(15) Al–N(2)	1.8348(18)
Al-N(1) 1.840	8(18) Al–N(4)	1.8518(18)
O(1)-Li(1) ^b 1.983	(4) O(2)–Li(1)	1.796(4)
N(6)-Li(1) ^b 2.000	(4)	
Bond angles		
N(6)P(1)O(1) 101.3	N(6)P(1)N(5)) 115.99(11)
O(1)P(1)N(5) 112.1	5(9) N(6)P(1)N(4) 127.32(11)
O(1)P(1)N(4) 92.5	6(8) N(5)P(1)N(4) 104.45(9)
O(2)P(2)N(1) 117.6	O(2)P(2)N(2)) 117.92(9)
N(1)P(2)N(2) 91.6	O(2)P(2)N(3)) 106.39(9)
N(1)P(2)N(3) 112.0	1(9) N(2)P(2)N(3) 110.86(9)
O(1)AlN(2) 121.5	7(8) O(1)AlN(1)	124.01(7)
N(2)AlN(1) 80.2	0(8) O(1)AlN(4)	80.19(7)
N(2)AlN(4) 131.8	2(8) N(1)AlN(4)	125.56(8)
P(1)O(1)Al 95.1	9(7) P(1)O(1)Li(1) ^b 90.72(13)
AlO(1)Li(1) ^b 131.1	0(16) P(2)O(2)Li(1) 143.41(16)
P(2)N(1)A1 93.9	9(9) P(2)N(2)Al	94.15(9)
O(2)Li(1)N(6) 145.2	(2) O(2)Li(1)O(1) ^b 135.30(2)
O(1) ^b Li(1)N(6) 75.8	5(15) O(2)Li(1)P(1) ^b 163.50(3)
P(1)N(4)Al 91.8	5(8) P(1)N(6)Li(1) ^b 91.52(15)

^a Symmetry transformation used to generate equivalent atoms. ^b -x, -y+1, -z.

N,*O*, towards the aluminum center in **3**. The two halves of the centrosymmetric dimer are linked by two threecoordinate Li⁺ ions, which display *O*-monodentate coordination to the *N*,*N*'-chelated ligand and *O*,*N* chelation of the other $[OP(N'Bu)_2(NH'Bu)]^2$ dianion. Access to the cavity of the resulting twelve-membered $Al_2P_2O_4N_2Li_2$ ring is partially impeded by 'Bu substituents (on N(1)).

As indicated in Table 4, one of the P-N bond lengths (P(1)-N(6)) in 3 is ca. 0.1 Å shorter than the other five P-N bonds, which fall within the narrow range 1.650-1.659 Å. Furthermore, the P(1)-O(1) distance is substantially longer than the P(2)–O(2) bond, 1.6056(14) versus 1.4931(15) Å (cf. d(P=O) = 1.5016(12) Å in Al(NMe₂)₃·OPPh₃ [25]). Although this difference may be partly attributable to the different coordination numbers of the two oxygen atoms, 3 versus 2, it may also indicate delocalization of the negative charge of the complex anion [('BuN)('BuNH)P(µ-O)(µ-N'Bu)Al- $(\mu$ -N^tBu)₂P(O)(NH^tBu)]⁻ over the N(6)–P(1)–O(1) unit. The mean Al-N and Al-O bond distances of 1.842 and 1.805 Å, respectively, are typical for 4-coordinate Al [26,27]. There is a substantial difference of almost 0.2 Å for the Li-O distances involving the two- and three-coordinate oxygen atoms, as has been observed previously [28].

The four-membered PN_2Al , PONAl and PONLi are all almost planar with maximum deviations from planarity of 0.0125(7), 0.0284(7) and 0.0497(13) Å, respec-

tively. The $[OP(N^{t}Bu)_{2}(NH^{t}Bu)]^{2-}$ ligands subtend identical bond angles of 80.2° at Al via either *N*,*O* or *N*,*N* chelation. The endocyclic bond angle $\angle OLiN$ is 75.85(15)°.

The ¹H-NMR spectrum of **3** in C_6D_6 shows six equally intense resonances in the region δ 1.36–1.67 corresponding to the six inequivalent ¹Bu groups attached to nitrogen atoms N(1)–N(6), suggesting that the solid-state structure is maintained in C_6D_6 solution. The solid-state ³¹P-NMR spectrum exhibits two resonances at δ 12.17 and -4.88 and the solid-state ²⁷Al-NMR spectrum revealed one signal at δ – 183.1.

4. Conclusions

These preliminary studies of imido analogs of aluminophosphate show that the AlPO analog Al[OP-(N^tBu)₃] is not accessible from the reaction of OP[NH^t-Bu]₃ and trimethylaluminum. Partial deprotonation occurs to give the anions $[OP(N^tBu)_x(NH^tBu)_{3-x}]^{x-}$ (x = 1, 2) which engage in O,N or N,N chelation to the aluminum center. The prevalence of four-membered ring formation in 1–3, in contrast to the eight-membered rings observed for aluminophosphonates [29], likely results from the steric influence of bulky 'Bu groups. Future attempts to generate imido analogs of AlPO materials will target derivatives with a lower N/O ratio, e.g. Al[O₃P(NR)], and smaller R groups.

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 162602, 162603 and 162604 for compounds **1**, **2** and **3**, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank Dr R. MacDonald (University of Alberta) for the data collections for 1, 2 and 3 and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. Helpful discussions about the structure of 1 with Dr M. Parvez (University of Calgary) are gratefully acknowledged.

References

 For a review see: A.K. Cheetham, G. Ferey, T. Louseau, Angew. Chem. Int. Ed. Engl. 38 (1999) 3268.

- [2] Y. Yang, J. Pinkas, M. Schäfer, H.W. Roesky, Angew. Chem. Int. Ed. Engl. 37 (1998) 2650.
- [3] I.D. Williams, Q. Gao, J. Chen, L.-Y. Ngai, Z. Lin, R. Xu, Chem. Commun. (1996) 1781.
- [4] W. Yan, J. Yu, Z. Shi, R. Xu, Inorg. Chem. 40 (2001) 379.
- [5] M.G. Walawalkar, H.W. Roesky, R. Murugavel, Acc. Chem. Res. 32 (1999) 117.
- [6] M.R. Mason, J. Cluster Sci. 9 (1998) 1.
- [7] Y. Yang, M.G. Walawalkar, J. Pinkas, H.W. Roesky, H.-G. Schmidt, Angew. Chem. Int. Ed. Engl. 37 (1998) 96.
- [8] Y. Yang, H.-G. Schmidt, M. Noltemeyer, J. Pinkas, H.W. Roesky, J. Chem. Soc. Dalton. Trans. (1996) 3609.
- [9] M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky, H.-G. Schmidt, J. Am. Chem. Soc. 119 (1997) 4656.
- [10] M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky, H.-G. Schmidt, Organometallics 16 (1997) 516.
- [11] K. Dimert, U. Englert, W. Kuchen, F. Sandt, Angew. Chem. 109 (1997) 251 (Angew. Chem. Int. Ed. Engl. 36 (1997) 241).
- [12] M.R. Mason, M.S. Mashuta, J.F. Richardson, Angew. Chem. 109 (1997) 239 (Angew. Chem. Int. Ed. Engl. 36 (1997) 239).
- [13] A. Keys, S. Bott, A.R. Barron, Chem. Commun. (1996) 2339.
- [14] J.K. Brask, T. Chivers, M. Parvez, G. Schatte, Angew. Chem. Int. Ed. Engl. 36 (1997) 1986.
- [15] P. Blais, J.K. Brask, T. Chivers, G. Schatte, Inorg. Chem. 40 (2001) 384.
- [16] R.R. Holmes, J.A. Forstner, Inorg. Chem. 2 (1963) 380.
- [17] SMART version 5.0: Software for the CD Detector System, Bruker AXS, Inc., Madison, WI, 1998.
- [18] SAINT version 5.0: Software for the CCD Detector System, Bruker AXS, Inc., Madison, WI, 1998.
- [19] G.M. Sheldrick, SHELXS-97: Program for the Solution of Crystal Structures, Universität of Göttingen, Göttingen, Germany, 1997.
- [20] G.M. Sheldrick, SHELXS-97-2: Program for the Solution of Crystal Structures, Universität of Göttingen, Göttingen, Germany, 1997, Function minimized: $\Sigma w(|F_o| |F_c|)^2$.
- [21] E. Flück, H. Riffel, H. Richter, Phosphorus and Sulfur 4 (1985) 273.
- [22] A. Cowley, S.K. Mehrotra, H.W. Roesky, Inorg. Chem. 20 (1981) 712.
- [23] (a) J.K. Brask, T. Chivers, G.P.A. Yap, Chem. Commun. (1998) 2543;
 (b) J.K. Brask, T. Chivers, G. Schatte, G.P.A. Yap, Organometallics 19 (2000) 5683.
- [24] (a) J.P. Corden, W. Errington, P. Moore, M.G.H. Wallbridge, Chem. Commun. (1999) 323;
 (b) J.P. Duxburg, A. Cowley, M. Thornton-Pett, L. Wantz, J.N.D. Warner, R. Gretrex, D. Brown, T.P. Kee, Tetrahedron Lett. 40 (1999) 4403;
 (c) W. Liu, A. Hassan, S. Wang, Organometallics 16 (1997) 4257;
 (d) J. Jewinski, J. Zachara, T. Kopen, Z. Ochal, Polyhedron 16 (1997) 1337;
 (e) D.A. Atwood, M.S. Hill, J.A. Jegier, D. Rutherford, Organometallics 16 (1997) 2659.
- [25] J. Pinkas, H. Wessel, Y. Yang, M.L. Montero, M. Noltemeyer, M. Fröba, H.W. Roesky, Inorg. Chem. 37 (1998) 2450.
- [26] M.S. Hill, D.A. Atwood, Main Group Chem. 2 (1998) 285.
- [27] H. Nöth, A. Schlegel, J. Knizek, I. Krossing, W. Ponikwar, T. Seifert, Chem. Eur. J. 4 (1998) 2191.
- [28] J.K. Brask, T. Chivers, M. Parvez, G.P.A. Yap, Inorg. Chem. 38 (1999) 3594.
- [29] M.R. Mason, R.M. Mathews, M.S. Mashuta, J.F. Richardson, Inorg. Chem. 35 (1996) 5756.